Fed-batch microbioreactor platform for scale down and analysis of a plasmid DNA production process.
نویسندگان
چکیده
The rising costs of bioprocess research and development emphasize the need for high-throughput, low-cost alternatives to bench-scale bioreactors for process development. In particular, there is a need for platforms that can go beyond simple batch growth of the organism of interest to include more advanced monitoring, control, and operation schemes such as fed-batch or continuous. We have developed a 1-mL microbioreactor capable of monitoring and control of dissolved oxygen, pH, and temperature. Optical density can also be measured online for continuous monitoring of cell growth. To test our microbioreactor platform, we used production of a plasmid DNA vaccine vector (pVAX1-GFP) in Escherichia coli via a fed-batch temperature-inducible process as a model system. We demonstrated that our platform can accurately predict growth, glycerol and acetate concentrations, as well as plasmid copy number and quality obtained in a bench-scale bioreactor. The predictive abilities of the micro-scale system were robust over a range of feed rates as long as key process parameters, such as dissolved oxygen, were kept constant across scales. We have highlighted plasmid DNA production as a potential application for our microbioreactor, but the device has broad utility for microbial process development in other industries as well.
منابع مشابه
Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase
BACKGROUND In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. RESULTS An automated microfermentation platform (RoboLector) was successfully tested to overcome th...
متن کاملComparison between batch and fed-batch production of rhamnolipid by Pseudomonas aeruginosa
This paper presents a comparison between batch and three different sets of fed batch fermentations forrhamnolipid production by Pseudomonas aeruginosa. The batch run was performed with 500 ml of culturemedium having the initial glycerol and sodium nitrate concentrations of 30 and 8.3 g/l, respectively. For a fedbatch run with nitrogen source in feed, 250 ml of the nitrogen exc...
متن کامل-
A fermentation process for production of super coiled plasmid DNA in E. coli for use as a DNA vaccine was developed. In the process a feed-back control nutrient feeding strategy based on pH and DO was used to regulate the cell growth rate by controlling the interactivity of the nutrient feed rate, pH and DO. The process increased the total yield of plasmid DNA by approximately 4 fold as compare...
متن کاملPhysiological and Morphological Changes of Recombinant E. coli During Over-Expression of Human Interferon-g in HCDC
The objective of this research was to investigate the influence of the over-expression of recombinant interferon-g during high cell density cultivation on cellular characteristics of recombinant E. coli. Batch and fed-batch culture techniques were employed to grow Escherichia coli BL21 for production of human gamma-interferon in pET expression system. Final cell densities in batch and fed-batch...
متن کاملModeling and Simulation of Polyhydroxybutyrate Production by Protomonas extorquens in Fed-batch Culture
Modeling and simulation of Polyhydroxybutyrate (PHB) production by Protomonas extorquens in fed-batch culture were conducted in this research. The fed-batch model, developed for this process, employed a kinetic model proposed by other researchers. Several kinetic models were investigated to choose the best model. The criterion for this selection was goodness of fit (δ2). Haldane kinetic model w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 109 8 شماره
صفحات -
تاریخ انتشار 2012